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Moment Analysis of the Time-Dependent Transmission
of a Step-Function input of a Radioactive Gas through
an Adsorber Bed

T. VICTOR LEE, DANIEL ROTHSTEIN, and RICHARD MADEY

DEPARTMENT OF PHYSICS
KENT STATE UNIVERSITY
KENT, OHIO 44242

Abstract

The time-dependent concentration of a radioactive gas at the outlet of an
adsorber bed for a step change in the input concentration is analyzed by the
method of moments. This moment analysis yields analytical expressions for
calculating the kinetic parameters of a gas adsorbed on a porous solid in terms of
observables from a time-dependent transmission curve. Transmission is the ratio
of the adsorbate outlet concentration to that at the inlet. The three non-
equilibrium parameters are the longitudinal diffusion coefficient, the solid-phase
diffusion coefficient, and the interfacial mass-transfer coefficient. Three quanti-
ties that can be extracted in principle from an experimental transmission curve
are the equilibrium transmission, the average residence (or propagation) time,
and the first-moment relative to the propagation time. The propagation time for a
radioactive gas is given by the time integral of one minus the transmission
(expressed as a fraction of the steady-state transmission). The steady-state
transmission, the propagation time, and the first-order moment are functions of
the three kinetic parameters and the equilibrium adsorption capacity. The
equilibrium adsorption capacity is extracted from an experimental transmission
curve for a stable gaseous isotope. The three kinetic parameters can be obtained
by solving the three analytical expressions simultaneously. No empirical
correlations are required.

INTRODUCTION

Huang et al. () developed a mathematical model for a linear
chromatographic reactor with a first-order chemical reaction. This model
includes three nonequilibrium processes: 1) longitudinal diffusion, 2)

Copyright © 1986 by Marcel Dekker, Inc. 0149-6395/86/2106-0689$3.50/0



13:20 25 January 2011

Downl oaded At:

690 LEE, ROTHSTEIN, AND MADEY

solid-phase diffusion, and 3) gas-solid interfacial mass transfer. The
decay of a radioactive isotope is a first-order reaction. For a radioactive
gas, the reaction rate constant is the known radioactive decay constant A,
which is the same in both the gas and solid phases. This system of a
linear chromatographic reactor with a radioactive gas is characterized by
four parameters: 1) the equilibrium adsorption capacity K 2) the
resistance Ry of the film at the interface between the gas phase and the
solid phase, 3) the longitudinal diffusion coefficient D, and 4) the solid-
phase intraparticle diffusion coefficient Ds. The objective of this paper is
to show how the three nonequilibrium parameters Ry, D;, and D, can be
obtained from measurements of the time-dependent transmission of a
step-function input concentration C; of a radioactive gas flowing through
a linear chromatographic reactor. Transmission is the ratio of the
adsorbate concentration C(L,z) at the outlet to the concentration C, at the
inlet of the chromatographic reactor (or adsorber bed) of length L.

The equilibrium adsorption capacity K for a stable gas can be obtained
from a time-dependent transmission curve in the manner described by
Huang et al. (2). The value for K for a radioactive isotope is assumed to be
the same as that for a stable isotope. To extract the three nonequilibrium
parameters (viz., Rr, D;, and D,), we apply the method of moments to
derive expressions for the propagation time ¢, the first-order moment m,,
and the steady-state transmission T, as functions of the three non-
equilibrium parameters. The method of moments has the advantage that
an analytical expression for the transmission is not needed in order to
extract the kinetic parameters. Since the three quantities (viz., tf, m, and
T,) can be obtained from an experimental time-dependent transmission
curve, the three nonequilibrium parameters then can be determined by
solving the three equations simultaneously.

MOMENT ANALYSIS

A typical time-dependent transmission curve for a step-change in the
input concentration of a radioactive gas flowing through an adsorber bed
is shown in Panel (a) of Fig. 1. The transmission function is an S-shaped
curve which rises slowly from zero and reaches a steady-state value T,
Let t¥ denote the mean residence time (or the propagation time) for the
adsorbate to saturate the adsorber bed. In order for the moments of the
transmission function to be finite, we define a new function f(¢):

S@)y=g@) —T@) (1)
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where the step-function g(r) is

0, for0 <t <ty
T

i

50 = {

fort >ty

Graphical representations of the functions g(f) and f(r) are shown in
Panels (b) and (c), respectively, of Fig. 1. The mean residence time for the
step-function (i.e., plug-flow) transmission function g(f), shown in Panel
(b), is the same as that for the actual transmission function T(¢), shown in
Panel (a). The propagation time #; is the time that yields areas of equal
magnitude for the two cross-hatched regions in Panel (c); that is,

[" 1@ == [ s 3)

According to Eq. (3), the zeroth-order moment m, of the function f(r)
vanishes; that is,

mo= | pwde = 0 @)

Substituting Egs. (1) and (2) into Eq. (3), and adding #XT to both sides of
the resultant equation, we find that the propagation time r} is related to
the transmission function:

t;=J;w[1—$]dt (5)

85

For stable gases, T, = 1; then Eq. (5) reduces to

t, = fow [V = T(t)]dt (6)

Equation (6) is identical to the expression for the propagation time
derived previously by Huang et al. (2) for a stable adsorbate.

The nth-order moment of the function f(r) with respect to the
propagation time £f is

m,= "= s )

Unlike the moments of the transmission function 7(r), all of the moments
of the function f(¢) with respect to the propagation time z;* are finite. Now,
the first-order moment of the function f(r) with respect to ¥ is

m = [T = rwar (8)
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FiG. 1. The time-dependent transmission function 7(¢) and the step-function g(r) at the
propagation time 7 for a radioactive adsorbate. Panel (c) is the difference g(¢) — 7).
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The vanishing of the zeroth-order moment means that the first-order
moment reduces to

my = [ e ©)
0
From the theorem for differentiation of a Laplace transform [Hall et al.,
(3)], we may express the first moment:
mi= [t = = tim LELL - _yim 2 (6(p) — 1)) (10)
0 P p—0 dP

0

Here p is the Laplace operator and F(p) is the Laplace transform of the
function f(¢). Similarly, G(p) and T(p) denote the Laplace transforms of
the functions g(r) and 7(?), respectively, in Eq. (2).

Now, the Laplace transform of the step function g(r) (viz., Eq. 1) is

G(p) = LIg(1)] = % [T, exp (—2p)] (11)

The Laplace transform of the time-dependent transmission T(¢) is
attainable from Eq. (17) of Huang et al. (I); that is,

T(p) = AT = e |30 - LV¥ap| ()

Here the function Y,(p) is

YA(p)—ID—L+l[))L+ “Ygﬁ”’ +Bi (13)
where
YD) = TE A (14)
Y,(p) = 3’;5)5(0 coth o — 1) (15)
s=R /Pt (16)
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Ry = R/3k, (17)

(18)

Here u is the interstitial flow velocity, R is the average radius of the
spherical particles, k, is the mass-transfer coefficient, A, and A, are the
solid- and gas-phase radioactive decay constants, and ¢ is the void
fraction of the adsorber bed.

Note also that the equilibrium transmission 7, which is the value of
the transmission after a time long enough to establish equilibrium, is
obtainable from Egs. (19) and (21a) of Huang et al. (/); that is,

jo ) C(L,t)dt

T — Rout
Rin f Codt
0

Il

(19)

Here R, (R,,) denotes the total amount of reactant at the column inlet
(outlet). In the right-hand member of Eq. (19), the constant volumetric
flow rate Q does not appear because it multiplies both the numerator and
the denominator. The result of evaluating the integrals in Eq. (19) is

T, = exp - 2”—DL—
L
3QK;D§ (60 COth 0'0 - 1)
1+ 4?L A+ 3II§D -1
“ l+~7{#(cocothoo—l)
= exp (—yL) (20)
with
30“KZD‘° (cgcotho, — 1)
=" | 1+ [+ —R -1
2D, u 1+ 3KI€;RF(00 coth o, — 1)

(21)
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and
O'() = R(}\s/Ds)l/z (22)

When Egs. (11) and (12) are combined to evaluate m; in Eq. (10), the
derivative can be split into two parts, H, and H;:

m,=H, + H, (23)

where H, includes all terms proportional to 1/p, and H, includes all terms
proportional to 1/p°. The resulting expressions for H, and H, are

H1=1iml{[exp (;DL \/Tp))%(—Lm]

p—0

+[11;;exp(—4:p)1} (24)

and

H, = lim ;}{[exp (v— - Lm)] — [T, exp (—t,’,"p)]} (25)

p—0

The quantity H, is indeterminate because each term in the numerator
reduces to T, as p — 0, as can be seen by rewriting the first term in the
curly bracket of Eq. (25):

lim exp [% - L YA(P)]
L

p—0

ul 2D, [  p  aY(p) Xg]}
- -— . - + + —_— = T“
lim exp {2DL [1 u 4D? + D, D, D, s

p—=0

(26)

Applying I’Hospital’s rule to Eq. (25), we obtain

= 11m——l{[exp (%—-L Y.p) ) ( LM)]

o 2p

+Tapem(-pph == @)
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Thus Eq. (23) becomes
m, = H,/2 (28)

Since the first-order moment m, is finite, the numerator of H, in Eq. (23)
must vanish as the operator p approaches zero. By setting the numerator
of Eq. (23) equal to zero, we obtain the following expression for the
propagation time:

3aK <coth S0 _ csch? 00)
1+ 2 o
2
I [1 + 3KI€2‘RF (o, coth oy — 1)]
t: = ;‘ (29)
3aKD,
4D “R2 £ (6 coth 5y — 1)
14+ = A+ 3KD
u 1 +——°‘Bf(cocothco—l)

RZ

Now applying L’'Héspital’s rule to Eq. (24), we obtain the following
expression for the first-order moment m;:

9aRK? [ coth 2
(jr_ [M et 00]
4 (o1}

(LT.“)

m;=|—"

' u 3KDRy
1+

3
R2 (00 coth Gy — I)]

3aKR? [2csch’ogcothoy  csch’o coth 6 3KDRp
- - - 1+ (opcothoy— 1)

8D, Sg o} a3 R?
3aKD 12
225 (ogcothoy — 1)
4D, R?
R Mt TSk R
u sNF
1+ 22 (og cothoy — 1)
2
[1 + 30K (coth oo cschzco)]
+ D 2\ %
2 3aKD 372
“ g 2 £ (CO coth Gg — 1) (30)
4D, R
1+— .+
u? 3KDRp

1+ (ogcothoy — 1)

RZ
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Equations (20), (29), and (30) are expressions for the equilibrium
transmission T, the propagation time ¢, and the first-order moment m,
of the time-dependent transmission of a step-function input of a
radioactive gas through an adsorber bed. These three quantities depend
on D, D, Rg, and K. Numerical values of each can be obtained from a
transmission curve. The equilibrium transmission is observed directly.
The propagation time is calculated from the integral expression in Eq.
(5), and the first-order moment from the integral expression in Eq. (8).
For a radioactive gas the reaction rate constant is the known radioactive
decay constant A, which is same in both of the gas and solid phases; that
is,

A=A = A, (31)

where the subscripts g and s denote the gas and solid phases, respectively.
The value of the equilibrium adsorption capacity K for a radioactive
isotope is considered to be the same as that for a stable isotope. As shown
in Huang et al. (2), the equilibrium adsorption capacity K can be
obtained from an appropriate integral of the time-dependent transmis-
sion for a stable isotope. After the equilibrium adsorption capacity X is
determined, then it is possible to extract the three nonequilibrium
parameters (viz., D;, D, and R;) by solving Egs. (20), (29), and (30)
simultaneously.

DISCUSSION

Madey et al. (4) investigated the transmission of a gaseous radioactive
isotope through an adsorber bed. They considered the gas-solid inter-
facial resistance to be negligible (i.e., Ry = 0) and that equilibrium in the
solid phase is established instantaneously (i.e., D). A time-dependent
solution for the transmission of radioactive gases with a single effective
diffusion coefficient for a step-function input was obtained in Eq. (21) of
Madey et al. (4). Substituting this transient solution into the integral
expression for ¢} in Eq. (5) of this paper, and performing the integrations,
we obtain:

L q+ary
u

\ﬁ + 43;}"(1 + O.K)

* =
¥ =

(32)
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Under the same conditions (viz., R; = 0 and D), Eg. (29) reduces to
Eq. (32) also.

In a study of the transmission of a stable gas through an adsorber bed,
Huang et al. (2) derived a time-dependent expression for the transmission
of a stable gas with a step-function input. Substitution of this time-
dependent solution [viz., Eq. (4) of Huang et al. (2)] into the integral
expression Eq. (6) yields an expression independent of the diffusion
coefficient:

f, = 2 (1 + oK) (33)

For the case of a stable gas where the reaction rate constants A, and A, are
zero, Eq. (29) and Eq. (32) reduce to Eq. (33).

The results shown above indicate that (a) Eq. (5) is an appropriate
expression for the propagation time ¢f for a radioactive gas in terms of an
integral of the transmission curve, and (b) Eq. (29) is an appropriate
expression for the propagation time 7 of a radioactive gas in terms of
three nonequilibrium parameters (viz., D,, D, Ry) and the equilibrium
adsorption capacity K.

As shown in Appendix A, for stable gases (ie., A,= A, = () with
negligible film resistance (i.e., Ry = 0), the first-order moment m, in Eq.
(30) reduces to

I aLKR?
' 15D

+ L:ZL (1 + k)’ (34)

Equation (34) is identical to Eq. (13) reported by Huang et al. (5) in a
moment analysis of breakthrough curves for stable gases. This result
shows that the expression of the first-order moment (viz., Eq. 30) reduces
to the proper expression for a stable gas.

APPENDIX A

For the special case of no chemical reaction (A, = A, = 0) and no mass-
transfer resistance (Rp = 0), Eq. (34) for the first-order moment m, can be
obtained from Eq. (30) by expanding the hyperbolic functions as power
series in o, (= R\/A/D,) and taking the limit as A, and A, approach zero.
The expansions of the hyperbolic functions are
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o 003 2 5

1 1
=+ % 4 L o= om0y - .
cothog ="+ 37~ 45 ¥ 9455 ~ a5 * (A1)
1 oo . 7 .5 31 _,. 121 _,
= %0 L 1 - - (A2
eschos = =t 360%° T 15120 ° * 604800 °° (A.2)
Retaining terms of 0(c}) or lower, we have
2 csch’c, cotho, csch’c, cotho, _ —8 4
— - =—°_ 2 4
G 0, o, 45 135
8 4
+5pssOht (A3)
coth o, 5 2 o} 2
LO82% - - T R 4
o MO0 =345 ¥ 159 9% (A4)

Now Eq. (30) for the first-order moment can be rewritten:

2 2
UMy _ i 32KR [—8— + 0(002)] + 2 [1 + 30K (% - 0(#))]

L a0 8D, |45 2
(A.5)
In the limit, Eq. (A.5) reduces to Eq. (34):
aLKR> | LD, )
= + K
m, 15D.u 5= (1 + ak) (34)
SYMBOLS
C gas-phase concentration (mol/cm?)
Co inlet concentration (mol/cm’?)
D, longitudinal diffusion coefficient (cm?/s)
D, solid-phase diffusion coefficient (cm?/s)
K adsorption capacity (dimensionless)
k, mass transfer coefficient (cm/s)
L length of chromatographic column (cm)

m, first-order moment (s?)
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Laplace transform operator (s™)
solid-phase concentration (mol/cm?)
radius of particles (cm)

R/3k,; film resistance (s)

time (s)

propagation time (s) for a stable gas
propagation time (s) for a radioactive gas
C(z,t)/C,; transmission

steady-state transmission

Interstitial flow velocity (cm/s)

defined in Eq. (13)

defined in Eq. (15)

defined in Eq. (14)

(1 —¢)e

void fraction of adsorber bed
gas-phase reaction-rate constant (s™)
solid-phase reaction-rate constant (s™")
decay constant for a radioactive gas

Ry/(p + A)/D,

R\/A/D,

X oe

B4

g

aa>rpo Q_:(j;:st o B B2 e
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